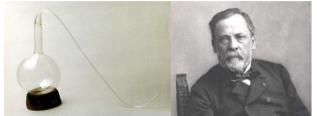

Propositions de programmes L1 BCST

Réunion du 15 janvier 2013

Licence 1 S1 2014		Licence 1 S2 2014	
75h	unité monde vivant/evolution 1 (Cecile Fairhead et Line Duportet)	75	unité monde vivant/evolution 2 (Cecile Fairhead et Line Duportet)
25 h	Biologie et Chimie (groupe de travail interdisciplinaire, cf ci dessous)	25h	unité monde vivant/evolution 3 (Cecile Fairhead et Line Duportet)
50h	Chimie	50h	Chimie
50h	Mathematique	50h	physique
25h	Geosciences	27h	Projet Pro (9h) + Langues (18h)
27h	projet pro (9h) + Methodo (18)	25h	C2i ou pluridisciplinaires
50h	UE options et ouverture (appel à propositions)	50h	UE options et ouverture (appel à propositions)
Total 302 h		Total 302 h	

L1 Semestre 1

UE Chimie-Biologie : Aux origines de la vie 25H



UE Chimie-Biologie : Aux origines de la vie 25H

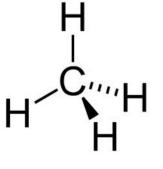
Cours introductif : panorama des idées

Point de vue historique : les grandes expériences et courants de pensée (génération spontanée, force vitale,...)

Hypothèses proposées et questions restant en suspens

Thème 1 : Les briques de la vie

Description structurale, fonctions chimiques (acides aminés, sucres, lipides, nucléotides)

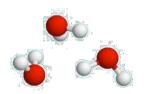


Pourquoi ces atomes?

Propriétés des atomes, valences, liaisons, variété des fonctions chimiques Ions métalliques

UE Chimie-Biologie: Aux origines de la vie 25H

Thème 3 : Formation des petites molécules

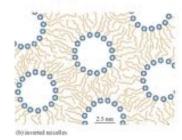

Cas des acides aminés : réactions à partir de molécules inorganiques dans les conditions prébiotiques (conditions réductrices, température, illumination)

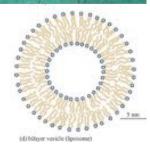
Chiralité des acides aminés

Importance de la concentration (aspects quantitatifs) Vitesse de réaction, cinétique.

Thème 4 : Propriétés des molécules en milieux aqueux

Rôle et propriétés de l'eau Solvatation, notion d'électrophilie et hydrophobie Polymérisation (aa, nt), Auto-assemblage (lipides)



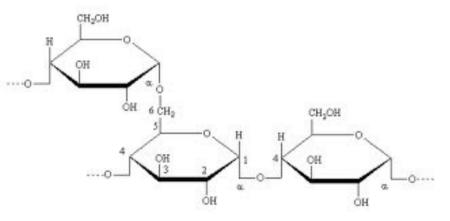

TP: Liposomes filtrés sur colonne ou 2 phases avec colorant

Compartimentation, Auto-réplication Mutations, Evolution Darwinienne

Groupe de travail

UE Chimie-Biologie (L1)

Parcours Chimie-Biologie (L2-L3)



Ally Aukauloo Sophie Bezzenine (coordinatrice)

Anne Bleuzen
David Bonnaffé
Emilie Brun
Isabelle Demachy
Hélène Dhorizon
Karine Steenkeste

Nicolas Bayan
Hervé Daniel
Christine Dillmann
Christine Houssin (coordinatrice)
Aurélie Hua-Van
Michel Laurent
Philippe Minard
Agathe Urvoas

BIOL 1 : Unité, diversité et évolution du vivant 75h

30h COURS (40%) 15h TD (20%) 30H TP (40%)

Partie 1 (15h)

L'évolution : présentation et méthodes

Partie 2 (31,5h)

La biodiversité : résultat et étape de l'évolution

Partie 3 (28,5h)

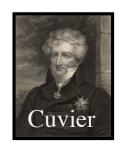
Le gène : unité de sélection de l'évolution

BIOL 1 : Unité, diversité et évolution du vivant 75h

Partie 1 : L'évolution : présentation et méthodes (15h)

COURS (9h) : Pierre Capy

L'arbre du vivant.

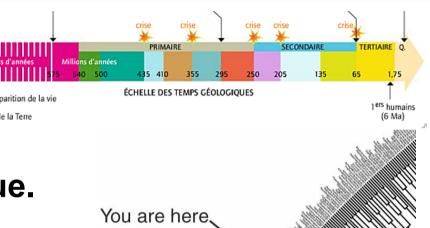

Histoire des idées en systématique.

Les méthodes de reconstruction phylogénétique.

Les phylogénies moléculaires.

Les virus, les bactéries, les archées.

4 TD phylogénie (6h)



BIOL 1 : Unité, diversité et évolution du vivant 75h

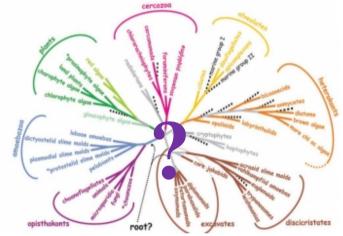
Partie 2 : La biodiversité : résultat et étape de l'évolution (31,5h)

COURS (9h) : Dominique de Vienne

L'arbre du vivant : histoire évolutive des eucaryotes, les principaux groupes

Les eucaryotes photosynthétiques

Les plantes terrestres


Les eumycètes

Les métazoaires

1 TD (1,5h) 7 TP (21h)

TD histoire évolutive des échinodermes



Partie 2 : La biodiversité : résultat et étape de l'évolution (31,5h)

7 TP

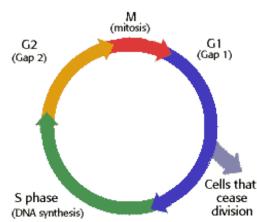
- diblastiques/triblastiques (comparaison éponge / cnidaire / protostomien / deutérostomien)
- microfaune du sol : diversité des arthropodes, bases du dessin scientifique
- squelette : exemple d'homologie structurale
- biodiversité embryophytes : bryophytes, gymnospermes, ptéridophytes : stratégies d'adaptation au milieu terrestre
- algues : exemple de convergence évolutive
- biodiversité eumycètes : passage uni/pluricellularité
- biofilm : diversité des procaryotes et des protistes

BIOL 1 : Unité, diversité et évolution du vivant 75h

Partie 3 : Le gène : unité de sélection de l'évolution (28,5h)

COURS (12h) : Cécile Fairhead

La définition de la vie sur terre: l'évolution, l'hérédité et la molécule d'ADN

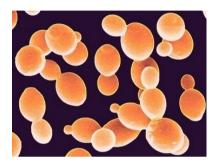


Mitose et méiose. Cycle cellulaire et cycles de vie.

L'expression de l'ADN et ses conséquences : notion de gène, transcription et traduction

Espèces modèles, populations expérimentales, polymorphisme, notion de clone

5 TD (7,5h) 3 TP (9h)



BIOL 1 : Unité, diversité et évolution du vivant 75h

Partie 3 : Le gène : unité de sélection de l'évolution (28,5h)

5 TD (7,5h)

3 TP (9h)

TP génétique levure: dilutions, étalement, notion de colonies, réplique (auxotrophie)

TP génétique E.coli: courbe de croissance, plage de lyse

TP mitose/méiose

BIOL 1 : Unité, diversité et évolution du vivant 75h

Groupe de travail

Solange Bertrandy (coordinatrice)

Pierre Capy

Dominique de Vienne

Marie Dufresne

Line Duportets

Cécile Fairhead

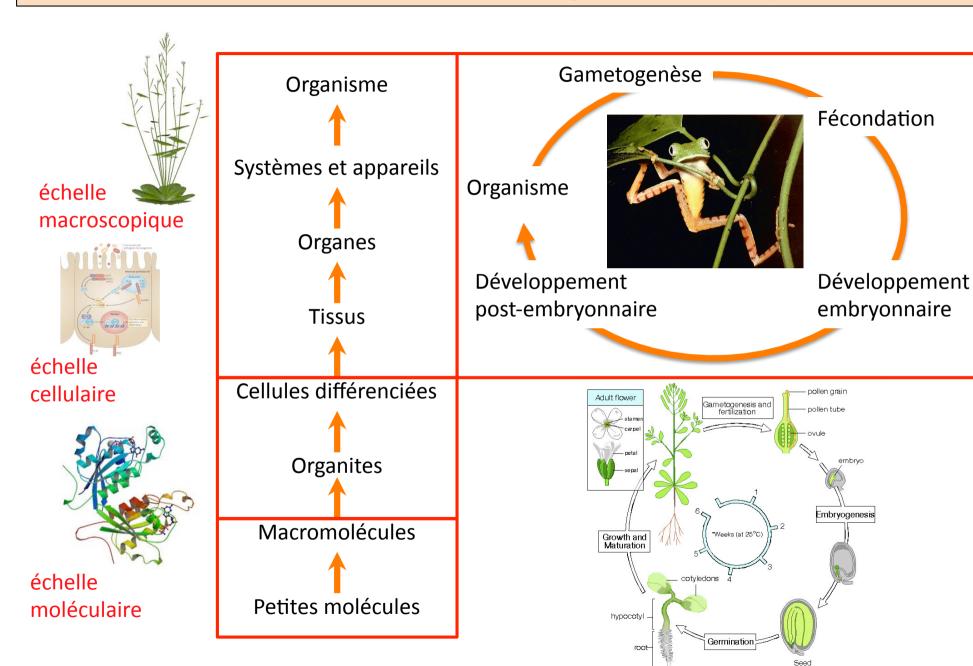
Aurélie Hua-Van

Michel Lemullois

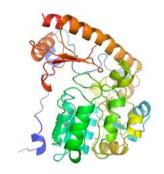
Florence Mougel

Christophe Regeard

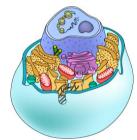
Fanny Rybak

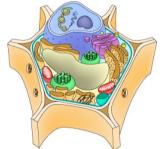


L1 Semestre 2


Biol2: De la molécule à l'organisme 75H (L1S2)

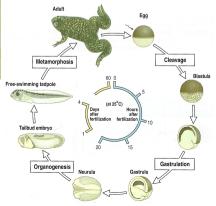
*In continuous illumination




Biol2: De la molécule à l'organisme 75H (L1S2)

Molécules et macromolécules : aspects structuraux (13.5 H)

Organisation et fonctionnement d'une cellule (18 H)



Organisation et fonctionnement d'un organisme pluricellulaire (≈ 21.5 H)

Construction d'un organisme pluricellulaire (≈ 22 H)

Partie I – Molécules et macromolécules : aspects structuraux (13.5 H)

Cours (Michel Laurent) 6 H

De la liaison « riche en énergie » de l'ATP aux couplages énergétiques des réactions

Acides aminés et protéines

Glucides: sucres simples et polysaccharides

Lipides: des acides gras aux membranes biologiques

TD + TP
TD 7

3 TD 4.5 H

Propriétés acido-basiques des acides aminés, détermination de la structure

primaire d'une protéine, allostérie, glucides, lipides...

1 TP 3 H

Electrophorèse d'une protéine (sous réserve de faisabilité)

Partie II - Organisation et fonctionnement d'une cellule (18 H)

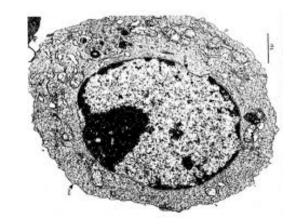
Cours (Simon Saule) 6 H

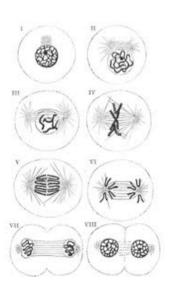
Membranes cellulaires

Transport des ions et petites molécules et trafic des protéines

Cytosquelette

Métabolisme énergétique


Cycle cellulaire et mitose (aspects cellulaires)


4 TD 6 H

Méthodes et analyses d'expériences

2 TP 6 H

Contenus à définir en fonction de Biol150 (Structure-Fonctions – BC-BA-BV)

TD

TD

TD

TD

Parties III et IV- Organisation, fonctionnement et construction des organismes pluricellulaires

(43.5H)

Les angiospermes

Cours (Michel Dron/Aurélie Hua-Van)

Organisation et grandes fonctions

Plan d'organisation d'une plante....TP Organes et grandes fonctions......TD Structure et rôle des tissus.......TD

Reproduction et développement

La croissance végétative	TP
La transition végétatif/floral La gamétogenèse	
La gamétogenèse	, IP
La fécondation	
Le développement embryonnaire	

Les amphibiens

9 H + 9 H

 $6 \text{ TD} \quad 6 \text{ H} + 3 \text{ H}$

5TP 6H+9H

1 TD 1.5 H

Parties III et IV- Organisation, fonctionnement et construction des organismes pluricellulaires

(43.5H)

Les angiospermes Cours (Michel Dron/Aurélie Hua-Van)

Organisation et grandes fonctions

Plan d'organisation d'un animalTI		
Grandes fonctions	TD	
Organisation des organes en tissus	TD	
Structure et rôle des tissus		

Reproduction et développement

La gamétogenèse	.TD
La fécondation	
Le développement embryonnaire	.TP
La mise en place du schéma corporel	.TD
La métamorphose	

Les amphibiens

	9 H + 9 H
6 TD	6 H + 3 H
5 TP	6 H + 9 H
1 TD	1.5 H

Parties III et IV- Organisation, fonctionnement et construction des organismes pluricellulaires

(43.5H)


TD	Tissus végétaux	Observation de tissus
TP	Croissance et organisation d'un angiosperme (Pois)	
TD	Plantes ligneuses	Observation
TP	Fonctionnement et évolution des méristèmes primaires	
TP	Reproduction des angiospermes	
TP	Organisation d'un amphibien (Dissection grenouille)	
TD	Fonctions vitales	Analyse d'expériences
TD	Tissus animaux	Observation d'un organe
TD	Gamétogenèse	Observation de coupes
TP	Etapes précoces du développement embryonnaire (Xénope)	
TD	Mise en place du schéma corporel	Analyse d'expériences

Exposés?

Comparaison de l'animal et du végétal

TD

Groupe de réflexion Biol2

Solange Bertrandy

Céline Charon

Marie-Hélène Cuif

Michel Dron

Marie Dufresne

Line Duportets

Aurélie Hua-Van (coordinatrice)

Boris Julien

Michel Laurent

Michel Lemullois

Morgane Locker

Florence Mougel

Simon Saule

Biol 3:

Evolution biologique, des populations aux communautés OU

Evolution biologique et Ecologie : des populations aux écosystèmes Cours : 9h (6x1.5h)

Génétique des populations (4,5h)

- Fréquences alléliques
- Forces évolutives
- Écart à la panmixie

Écologie (4,5h)

- (Introduction concepts)
- Ecosystème communauté interactions entre espèces
- (Biologie de la conservation)
- Dynamique des populations

BIOL3:

TD:9h(6x1.5h)

Génétique des populations : 2 séances

- Fréquences alléliques
- Forces évolutives

Écologie: 2 séances

- Dynamique des populations ?
- Ecosystème ? Biologie de la conservation ? Ecotoxicologie ?

Génétique des pop ET Ecologie : 2 séances intégratives

- 1 TD classique, 1 problème corrigé
 - Fragmentation des populations / Migration ?
 - Populations invasives / effet de fondation ?

BIOL3:

TP:6h(2x3h)

Génétique des population : 1 séance de simulation effet de la dérive, de la migration

Ecologie : 1 séance de TP

- •Phénomène d'interaction / symbiose ?
- •Inventaire en milieu naturel?
- •Diversité dans un yaourt ?