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Figure 7. Model of de novo gene emergence and protein evolution with IGORFs as elementary structural modules. (A) IGORFs encode a wide diversity
of peptides from disorder-prone to aggregation-prone ones, among which, a vast amount is expected to be able to fold in solution. Upon pervasive
translation, some peptides that can be deleterious or not will be degraded right away. Among the others, the blue one will confer an advantage to the
organism and will be further selected, thus providing a starting point for de novo gene birth. ( B) The starting point IGORF, once selected, is subjected to
amino acid substitutions, thereby increasing the overall proportion of hydrophilic residues of the encoded peptide. In the present case, this induces (1)
the disruption of the second cluster, resulting in the increase of the size of the central linker, and (2) the establishment of specific interactions between
hydrophilic residue (red dots), which increase the specificity of the folding process and the resulting fold. (C) The STOP codon of the starting point
IGORF can be mutated into an amino acid, thereby adding the yellow IGORF to the pre-existing selected IGORF and elongating its size. (D) After mul-
tiple events of amino acid substitutions and IGORF combinations through STOP codon mutations or indels, we obtain a protein that displays the ca-
nonical features of CDSs (i.e., long sequences, long linkers, enrichment in polar and charged residues), which enable the optimization of its flexibility
and the increase in specificity of its folding process, 3D fold, and interactions and finally participate along with domain shuffling or duplication events in
the modular architecture of genuine proteins. We note that although the figure focuses on de novo gene emergence, this model can also apply to
already existing proteins.
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Ourmodel is supported by previous observationswhich show
that (1) de novo genes are shorter than old ones (Wolf et al. 2009;
Tautz and Domazet-Lošo 2011), (2) the size of de novo gene exons
is similar to that of old genes (Palmieri et al. 2014; Schlötterer 2015;
Neme et al. 2017), and (3) novel domains are generally observed in
the C-terminal regions (Bornberg-Bauer et al. 2015; Klasberg et al.
2018). Nevertheless, a lot of questions regarding the mechanisms
predating the selection of an IGORF remain open. Figure 6 displays
a continuum in the presented properties between IGORFs and
CDSs that recalls the proto-gene model proposed by Carvunis
et al. (2012), although the continuity between the translated
IGORFs and the ancestral ones is to be shown. Whether the high
translation signal of highly translated IGORFs derives directly
from the acquisition of a methionine or whether it derives from
previously occasionally translated IGORFs that have optimized
their translational activity remains unclear. Similarly, the fate of
highly translated IGORFs and their relationship with ancIGORFs
are to be further characterized. Indeed, among the population of
highly translated ORFs, some of themmay give rise to future novel
genes, thereby constituting, today, the ancIGORFs of tomorrow,
whereas others may be short-lived in evolutionary history.
Finally, the increase in sequence and linker sizes observed between
the different ORF categories opens several questions. We showed
that the increase in linker size for ancIGORFs can be explained
by their GC content and, finally, their amino acid composition.
Precisely, ancIGORFs display a higher GC content than IGORFs
(41.9% and 36.1%, respectively), suggesting a role for GC-rich ge-
nomic regions in de novo gene properties and emergence as report-
ed in previous studies (Basile et al. 2017; Vakirlis et al. 2018).
Whether this increase in GC content is accompanied by an in-
crease in sequence length (STOP codons are AT-rich), linker size,
and, finally, foldability is a very interesting question that deserves
further study. Indeed, it is still unknown whether the linker size is
simply the consequence of the enrichment of CDSs in hydrophilic
residues and the increase in protein size or whether harboring long
linkers is accompanied by an increase in foldability and is thus a
selected criterion. Finally, all these results highlight an intimate re-
lationship between sequence length, GC content, and amino acid
composition, whose combination is directly related to the size of
linkers and clusters and, finally, to the foldability of the resulting
product. Which one or which combination has driven the evolu-
tion of CDSs? Our results cannot enable us to conclude.
Nevertheless, the function of a protein derives directly from its
structure and interactions and can be, more generally, related to
the concepts of stability, specificity, and diversity. These concepts
are in turn related to the equilibrium between hydrophobic and
hydrophilic residues, protein modularity, and, finally, protein
size, which may altogether shape the linker and cluster size of
proteins.

In this work, we propose amodel that covers the genesis of all
the diversity of the structural states observed in current proteins. If
IGORFs encoding foldable peptides seem to be more likely to give
rise to novel genes, disordered or aggregation-prone de novo pro-
teins may emerge occasionally (Fig. 4B). They are most of the
time (79%) associated with ancIGORFs expected to encode disor-
dered or aggregation-prone peptides as well, suggesting that the
structural properties of de novo proteins are already encoded in
the ancestral peptide they originate from.Whether the fold poten-
tial of a starting point IGORF conditions the structural properties
of the resulting de novo protein is an exciting question that de-
serves further study. Indeed, we can hypothesize that once select-
ed, an IGORF can elongate over time through the incorporation of

neighboring IGORFs, provided that the latter do not affect the fold
potential of the pre-existing protein. In accordance with work of
Vakirlis et al. (2020a), we can reason that once a starting point
IGORF is selected, it engenders novel selected effects, which, in
turn, increase the constraints exerted on it and subsequently re-
duce the possibility of future changes. It is thus tempting to spec-
ulate that the structural properties of the peptide encoded by the
starting point IGORF will be retained during evolution through
the elimination of the deleterious IGORFs’ combinations. All these
observations suggest that the diversity of the structural states ob-
served in current proteins has been originally inherited from the
diversity of the fold potential already encoded in the noncoding
genome. If and how the noncoding genome can account for the
structural diversity of proteins are other exciting questions that
deserve further study.

Methods

Data sets

CDSs and IGORFs

TheCDSswere extracted from the genome of S. cerevisiae S288C ac-
cording to the genome annotation of the Saccharomyces Genome
Database (Cherry et al. 2012). All unannotated ORFs of at least
60 nt, no matter if they start with an AUG codon, were extracted
from the 16 yeast chromosomes. We only retained ORFs that are
free from overlap with another gene or that partially overlap
with a gene if the nonoverlapping region is >70% of the IGORFs
sequence.

Data sets of reference

The disorder data set consists of 731 disordered regions extracted
from intrinsically disordered proteins of the DisProt database
(Hatos et al. 2020), that were used for the calibration of HCAtk
(Bitard-Feildel and Callebaut 2018). The globular data set consists
of 559 globular proteins extracted from the Protein Data Bank
(Berman et al. 2000; Burley et al. 2021) that were used for the cal-
ibration of IUPred (Dosztányi et al. 2005; Mészáros et al. 2009;
Dosztányi 2018; Mészáros et al. 2018). The TM regions data set
gathers 1269 TM regions extracted from the transmembrane pro-
teins contained in the Protein Data Bank of Transmembrane
Proteins (PDBTM) (Tusnády et al. 2004, 2005; Kozma et al.
2012). We only retained TM segments longer than 20 amino acids
corresponding to the minimum size of an IGORF.

Random noncoding genome

Intergenic regions were concatenated, and their nucleotides were
scrambled. Then random IGORFs of at least 60 nt were extracted
as explained above.

Scrambled sequences

Scrambled sequences were generated by shuffling the nucleotides
of the ORFs of interest. When an in-frame STOP codon was gener-
ated, its 3 nt were randomized until they did not lead to a STOP
codon.

Artificial IGORFs

We generated artificial sequences of fixed size (e.g., size of CDS) by
drawing nucleotides according to the nucleotide composition of
IGORFs.
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Estimation of the fold potential, the aggregation, disorder, and

TM propensities

The foldability potential was estimated using a score derived from
the HCA approach using the HCAtk program (Bitard-Feildel and
Callebaut 2018; Bitard-Feildel et al. 2018), whereas the disorder
and aggregation propensities were assessed with IUPred and
TANGO, respectively (Supplemental Methods; Fernandez-
Escamilla et al. 2004; Linding et al. 2004; Dosztányi et al. 2005;
Rousseau et al. 2006a ; Mészáros et al. 2009; Dosztányi 2018;
Mészáros et al. 2018). The presence of TM domains was predicted
with TMHMM (Krogh et al. 2001).

Protein abundances and amino acid propensities

Protein abundance data were extracted from the PaxDb database
(Wang et al. 2012). To depict the impact of the avoidance of non-
specific interactions with the ribosome, we only retained cytoplas-
mic proteins as annotated in UniProt (The UniProt Consortium
2019). The propensity of an amino acid i to be found in a CDS clus-
ter is defined by the log ratio of the frequencies of the amino acid i
in CDS clusters versus IGORF clusters as follows:

propensity (aai in CDS clusters) = log10
freq(aai) in CDS clusters

freq(aai) in IGORF clusters

( )
.

Reconstruction of ancIGORFs

To reconstruct the ancIGORFs of S. cerevisiae, we used the genomes
of the neighboring species Saccharomyces paradoxus (Durand et al.
2019), Saccharomyces arboricola (Yue et al. 2017), Saccharomyces
mikatae, Saccharomyces kudriavzevii, and Saccharomyces uvarum
(Scannell et al. 2011). Based on four independent studies that
each listed de novo genes of the S. cerevisiae genome, we retained
all de novo genes identified in at least two studies (Carvunis
et al. 2012; Lu et al. 2017; Vakirlis et al. 2018; Wu and Knudson
2018). This led to a total of 171 de novo genes, among which we
retained those for which we were able to identify at least two addi-
tional homologous sequences in the neighboring species, among
which at least one had to be noncoding in order to reconstruct
the corresponding nongenic region in the ancestor
(Supplemental Table S6). Therefore, we searched for the ortholo-
gous genes of the 70 de novo genes in the neighboring species us-
ing BLASTP (e-value<1×10−2) (Supplemental Fig. S7A). Then,
based on the species tree and starting from the branch of S. cerevi-
siae, we traced back to the root and identified the first node branch-
ing with a branch for which no orthologous gene had been
detected (Supplemental Fig. S7A, yellow circle). We hypothesize
that the corresponding locus in the ancestor was still nongenic.
We searched for the corresponding nongenic regions in the re-
maining species with TBLASTN (evalue<1×10−2). Following the
protocol described by Vakirlis andMcLysaght (2019), the resulting
homologous nucleotide sequences and orthologous de novo genes
were subsequently aligned withMACSE v2.05 (Ranwez et al. 2011,
2018), and the corresponding phylogenetic tree was constructed
with PhyML (Guindon et al. 2010). The multiple sequence align-
ment and its corresponding tree were given as inputs to PRANK
(Löytynoja and Goldman 2010) for the reconstruction of
the corresponding ancestral nongenic nucleotide sequence
(Supplemental Fig. S7B,C). Finally, the ancestral nucleotide se-
quences were translated into the three reading frames. The result-
ing IGORFs were then alignedwith the de novo gene of S. cerevisiae
with LALIGN (Huang and Miller 1991); those sharing a homology
with it were retained (Supplemental Fig. S7D).

Ribosome profiling analyses

Ribosome profiling data sets

We used five ribosome profiling data sets of wild-type S. cerevisiae,
two of which were generated in the present study (NCBI Gene
Expression Omnibus [GEO; https://www.ncbi.nlm.nih.gov/geo/]
accession number GSE173861, samples GSM5282046 and GSM5
282047) (Supplemental Methods). The three others were taken
from Radhakrishnan et al. (GEO accession number GSE81269,
samples GSM2147982 and GSM2147983) (Radhakrishnan et al.
2016) and Thiaville et al. (GEO accession number GSE72030, sam-
ple GSM1850252) (Thiaville et al. 2016).

Selection of ribosome protected fragments (RPFs)

Ribosome profiling reads were mapped on the genome of S. cerevi-
siae S288C using Bowtie (Langmead et al. 2009). For this study, we
only kept the 28-mers because, on average, 90% of them were
mapped on a CDS in the correct reading frame (Supplemental
Fig. S17).

Periodicity

The periodicity is calculated using a metagene profile. It provides
the number of footprints relative to all annotated start codons in
a selectedwindow. Themetagene profile is obtained by pooling to-
gether all the annotated CDSs and counting the number of RPFs at
each nucleotide position. Supplemental Figure S17 shows a clear
accumulation of signal over the CDSs, and a nice periodicity
over the 100 first nucleotides.

Identification of the occasionally translated IGORFs

We retained the IGORFs with at least 10 reads in at least one data
set.

Identification of the highly translated IGORFs

We kept the IGORFs with at least 30 reads in at least two data sets,
for which the fraction of in-frame reads was higher than 0.8.

Statistical analyses

All statistical analyses that aimed at comparing distributions were
performed in R (4.0.3) (R Core Team 2020) using the Kolmogorov–
Smirnov test (two-sided) when comparing whether the HCA score
distributions are statistically different and using the Mann–
Whitney U test for the comparison of themedian cluster size, link-
er size, sequence size, and cluster number distributions (bilateral
test for the comparison of cluster sizes and unilateral test for the
other properties). We used the one-proportion z-test for the com-
parison of the proportion of disordered, foldable, or aggregation-
prone sequences between different ORF categories. To circumvent
the P-value problem inherent to large samples (Lin et al. 2013),
tests were performed iteratively 1000 times on samples of 500 in-
dividuals randomly chosen from the initial sample when it was
larger than 500 individuals. The averaged P-value over the 1000
iterations was subsequently calculated.

Data access

The raw ribosome profiling data generated in this study have
been submitted to the NCBI Gene Expression Omnibus (GEO;
https://www.ncbi.nlm.nih.gov/geo/) under accession number
GSE173861. Raw and calculated data along with codes to repro-
duce analyses and figures are available as Supplemental Code 1,
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and the programs to extract the IGORFs and estimate their struc-
tural properties (ORFtrack and ORFold) are available in the
ORFMine package as Supplemental Code 2 and on GitHub (https
://github.com/i2bc/ORFmine).
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