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ABSTRACT
This study investigates the importance of the structural context in the formation of a type I/II A-minor 
motif. This very frequent structural motif has been shown to be important in the spatial folding of RNA 
molecules. We developed an automated method to classify A-minor motif occurrences according to 
their 3D context similarities, and we used a graph approach to represent both the structural A-minor 
motif occurrences and their classes at different scales. This approach leads us to uncover new subclasses 
of A-minor motif occurrences according to their local 3D similarities. The majority of classes are 
composed of homologous occurrences, but some of them are composed of non-homologous occur-
rences. The different classifications we obtain allow us to better understand the importance of the 
context in the formation of A-minor motifs. In a second step, we investigate how much knowledge of 
the context around an A-minor motif can help to infer its presence (and position). More specifically, we 
want to determine what kind of information, contained in the structural context, can be useful to 
characterize and predict A-minor motifs. We show that, for some A-minor motifs, the topology com-
bined with a sequence signal is sufficient to predict the presence and the position of an A-minor motif 
occurrence. In most other cases, these signals are not sufficient for predicting the A-minor motif, 
however we show that they are good signals for this purpose. All the classification and prediction 
pipelines rely on automated processes, for which we describe the underlying algorithms and 
parameters.
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Our knowledge of RNA molecules is expanding constantly. 
New non-coding RNAs are regularly discovered [1] and the 
function of some of them is not yet elucidated. The functions 
already known for non-coding RNAs are very diverse and 
numerous, such as the regulation of gene expression [2,3], 
RNA modification [4] or protection of the cell [5,6]. The 
function of an RNA molecule is strongly related to the three- 
dimensional structure it adopts. This is why many works for 
more than 40 years have been dedicated to try to predict the 
3D structure of an RNA molecule from its primary sequence, 
which remains an open problem in many aspects.

Besides well-known canonical interactions, lower energy 
interactions that do not belong to a secondary structure play 
an important role in the formation of the three-dimensional 
structure of an RNA molecule [7,8]. They are much more 
difficult to predict than the canonical interactions.

They are often organized in recurrent sets, which form 
substructures folding in an identical or almost identical way 
[9,10]. These small substructures appearing recurrently at 
various locations in different RNA molecules are called struc-
tural motifs or modules. These modules play a fundamental 
role in the basic architecture of RNA structures, and their 
detection can thus drastically increase the quality of predic-
tions of 3D RNA structures.

Structural motifs appearing within a secondary structure 
loop have been extensively studied, and listed in regularly 
updated databases [11,12]. Many methods to detect them in 
tertiary structures have been developed. Some of these meth-
ods search for modules by their geometry [13–18], while 
others use graph theory algorithms by modelling the interac-
tions within these modules, and sometimes using the asso-
ciated sequences [7,19–22]. In particular, these methods allow 
the detection of known structural motifs in new structures.

In contrast, structural motifs binding several distinct sec-
ondary structure elements have been much less studied from 
this point of view. The only method, to the best of our 
knowledge, to exhaustively identify this type of motif is 
a graph-based method described in [23,24].

Moreover, long-range motifs still remain unpredictable by 
the methods discussed above. This is in particular the case of 
the A-minor motif [25,26]. The type I/II A-minor motif, 
which will be the focus of our study, is an assembly of two 
consecutive nucleotides (often A) interacting by non- 
canonical interactions with two consecutive canonical pairs. 
Present in many families of non-coding RNAs (ribosomal 
RNAs, transfer RNAs, riboswitches, introns . . .), this motif 
represents more than 80% of the non-canonical interactions 
binding several secondary structure elements [23]. It has been 
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shown to be important in the spatial folding of RNA mole-
cules, as well as in cellular mechanisms such as codon- 
anticodon recognition during translation [25]. Its prediction 
is thus an interest in itself, despite the difficulties represented 
by the involvement of non-canonical interactions, the often 
large distance on the sequence between the two secondary 
structure elements, and the lack of sequence signature.

A recent study [27] focused on the classification and pre-
diction of this particular structural motif, by a machine learn-
ing method.

This method succeeds in predicting some particular 
A-minor motif occurrences, appearing jointly with 
a pseudoknot between secondary structure elements close to 
each other on the sequence. The other occurrences of 
A-minor motifs remain unpredictable.

These difficulties are the reasons why our research con-
cerns this particular structural motif.

As said before, we focus here on type I/II A-minor motifs. 
Usually, these motifs require two As at the positions interact-
ing with the cWW base pairs. Meanwhile, as in [23], we 
consider a less constrained definition A-minor type I/II 
motif, where either A can be replaced by another nucleotide.

The main purpose of our study is to understand the rela-
tionships between type I/II A-minor motifs and their struc-
tural contexts. More specifically, we want to determine what 
kind of information, contained in the structural context, can 
be useful to characterize and predict the presence and the 
position of A-minor motifs. We consider here a structural 
context at two scales: on the one hand, the 3D substructure of 
the molecule that surrounds the motif, up to a certain dis-
tance, which we call 3D structural context, and on the other 
hand, the graph composed of the canonical and non- 
canonical interactions appearing in this substructure. We 
call it the topological structural context.

To answer our question, we first define an automated way 
to classify A-minor motifs by comparing their 3D contexts 
(partially or totally). The different classifications we obtain, 
depending on the parts of the 3D structural context taken into 
account, allow us to make some reflections on the importance 
of the context. In a second step, we study the possibility of 
predicting the presence of A-minor motifs by assuming that 
the 3D context is not known, but we only know the topolo-
gical context and possibly sequence information.

This study gives first results on the predictibility of 
A-minor motifs as a function of the topological context. All 
the classification and prediction pipelines rely on automated 
processes, for which we describe the underlying algorithms 
and parameters.

2. Material and methods

2.1. Modelling structural context of A-minor motifs by 
graphs

This part defines the topological structural context of a type I/ 
II A-minor motif occurrence and explains how to represent it 
with graphs. Most of these notions have been defined in 
a previous paper [28]. Here, we summarize them and invite 
the reader to refer to that paper for technical details. In this 

article, a type I/II A-minor motif occurrence will be called an 
A-minor motif occurrence.

2.1.1. RNA graph
We define an RNA graph as a connected directed graph 
G ¼ ðV;Ac;AhÞ, with two sets of directed edges Ac and Ah, 
also called arcs. This kind of graph representation has often 
been used [21–23]. Vertices of V correspond to nucleotides. 
The arcs of Ac correspond to the covalent bonds of the 
primary sequence oriented in the 5’ ! 3’ direction. And 
each set of hydrogen bonds between nucleotides, that we will 
call canonical or non-canonical interaction in the rest of this 
article, is represented by two arcs in Ah, in both directions. 
Each arc in Ah belongs to a family corresponding to the 
pairing family of the interaction, according to the Leontis– 
Westhof nomenclature [29], in order of its direction. For 
example, an interaction trans Sugar/Hoogsteen between two 
nucleotides n1 and n2 will be represented by an arc of Ah with 
the family tSH from n1 to n2,and by an arc of Ah with the 
family tHS from n2 to n1. In particular, a canonical interaction 
is represented by two arcs with a special family (CAN), to 
differentiate it from the cis Watson-Crick/Watson-Crick 
family that can be non-canonical. Note that a cis Watson- 
Crick/Watson-Crick interaction between a G and a U 
(Wobble interaction) will be represented as two arcs of type 
CAN, because we consider it as part of the secondary struc-
ture even though it is not a canonical interaction.

2.1.2. Branches and k-extensions
An A-minor motif occurrence is represented by a particular 
RNA subgraph with six vertices numbered from 1 to 6 (see 
Fig. 1, top). 

Definition 2.1. We call branch of length k from a vertex u of 
an A-minor motif occurrence, the subgraph induced by the 
following vertices: 

• the vertex u. 
• the set Vk of vertices that are at a distance at most k from 

u, on a path which is composed only of arcs in Ac, whose 
starts or ends in u, and which does not cross any other vertex 
of the motif. Additionally, each of these vertices has a label 
according to the families of its incident directed edges in Ah: 
label 0 if it is unpaired, label C if involved only in a canonical 
interaction, label N if involved only in non-canonical interac-
tions, label M if involved in both types of interactions. 

• the set Vþk of vertices that are linked to a vertex of Vk by 
an arc in Ah. These vertices have the special label ?.

For example, in Fig. 1A, the circled part is a branch of 
length 3 from the vertex number 2. 

Definition 2.2. Let G be a RNA graph containing at least one 
A-minor motif occurrence and S be a subset of vertices of 
a given A-minor motif occurrence in G. We define the struc-
tural context from S of order k, denoted by k-S-extension, as 
the labelled subgraph of G induced by the following vertices: 

• the six vertices of the A-minor motif occurrence, 
• the vertices which belong to the branch of length k from 

each vertex of S.
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In the remainder of the article, we will call an A-minor 
motif occurrence and its structural context an embedded 
A-minor motif occurrence.

In this study, we consider several possible subsets S of 
vertices of the motif (see Fig. 1A,B,C). The first one includes 
the nucleotides of the motif being involved in a cis Sugar/ 
Sugar interaction (numbers 1,2,5,6 in the Fig. 1A). We thus 
choose to extend the motif to only one of the two strands of 
the helix (the strand with the nucleotides numbered 1 and 2 
in the Fig. 1). The second strand, with the nucleotides num-
bered 3 and 4 in the Figure, will be taken into account 
through the canonical interactions of the helix. This extension 
will then be called k-1,2,5,6-extension.

We also consider two other subsets S of vertices: the two 
vertices corresponding to the nucleotides of the loop (num-
bers 5 and 6 in the Fig. 1B) and the vertex corresponding to 
the nucleotide numbered 1 in the Fig. 1B, or the two vertices 
corresponding to the nucleotides of the loop and the vertex 
corresponding to the nucleotide numbered 2 in the Fig. 1 C. 
The first one will be called k-1,5,6-extension and the second 
one k-2,5,6-extension.

These three representations will be discussed in the Results 
section.

2.1.3. Contracted k-extension
RNA structures are subject to sequence mutation, due to 
evolution. Slight local changes in structures, like a difference 
of one nucleotide in a loop or an helix, may not change 
noticeably the 3D structure of the molecule, and thus may 
not change its function. This is why we define a contracted 

representation of the structural context, allowing us to repre-
sent similar but different contexts in an almost identical way.

A contracted k-extension of an A-minor motif is then 
a graph derived from the k-extension of the motif, in which 
consecutive vertices in a same strand which have the same 
label (as defined in Definition 2.1) are contracted in a same 
new vertex. This new vertex has a weight, noted p, corre-
sponding to the number of contracted nucleotides it repre-
sents. As we will see in section 2.3.2, this contraction allows us 
to consider as similar pairs of helices or pairs of loops, with 
a difference of one or two nucleotides.

Examples of contracted k-extensions are presented in 
Fig. 2, second line.

2.2. Three-dimensional similarity between A-minor motif 
occurrences

We compare A-minor motif occurrences according to their 
structural context of order k, by using a measure of 3D 
similarity between structural contexts. For a given A-minor 
motif occurrence, we consider the 3D substructure induced by 
the corresponding k-S-extension, without the vertices from 
the set Vþk (see Definition 2.1). We call it a local 3D structure. 
Fig. 3 shows examples of local 3D structures of two given 
A-minor motif occurrences.

For comparing two such structures, each nucleotide is 
represented by its carbon 3’ to overcome the problem of 
sequence differences [30,38]. For a pair of local 3D structures, 
we first align two by two the six nucleotides of the A-minor 

(A) (B) (C)

Figure 1. 3-extensions of an A-minor motif occurrence of type I/II. In (A), the 3-extension from the nucleotides numbered 1,2,5 and 6. In (B), the 3-extension from 
nucleotides 1,5,6. In (C), the 3-extension from nucleotides 2,5,6. The covalent interactions are in black, the canonical interactions are represented by a double line and 
the non canonical interactions are represented by the corresponding symbol in the Leontis–Westhof nomenclature [29]. The long range interactions are in red and 
the short range interactions (belonging to a secondary structure) are in blue. Every vertex is also annotated by its label. An example of branch of length 3 from the 
nucleotide 2 is circled in (A).
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motif by minimizing the RMSD [31]. Then we keep this 
alignment and calculate the RMSD of the two local 3D struc-
tures of the motif occurrences. An example of comparison is 
presented in Fig. 3.

2.3. Classification of A-minor motif occurrences and 
definitions of representatives

2.3.1. Classification of A-minor motif occurrences
In order to find structural features common to several structural 
contexts of A-minor motif occurrences, we classify A-minor 

motif occurrences according to RMSD between local 3D struc-
tures around the motif occurrences.

To do so, we define an undirected weighted graph, which 
we call similarity graph: each vertex corresponds to an 
embedded A-minor motif occurrence, and there is an edge 
between two vertices if the RMSD between the two corre-
sponding local 3D structures is lower than this threshold. 
Each edge is weighted by the corresponding RMSD.

We then apply to this graph a clustering method, named 
OClust-R [32], that seeks to maximize cluster density and average 
similarity. It also allows a motif occurrence to belong to two 

Figure 2. Representatives of a class of three A-minor motif occurrences. Above are represented the three uncontracted 3–1,2,5,6-extensions of the class, with the 
sequence in nucleotides for every vertex. In the middle, the corresponding contracted 3-extensions. The vertices in pink belong to the maximum common subgraph 
between the three 3-extensions . Below, are represented the maximum common subgraph (topological representative) between the three 3-extensions, and the two 
sets of regular expressions ρ1;2 and ρ5;6 (sequence representative). An ‘N’ in the regular expressions means that any type of nucleotide at this position is possible, 
because this position does not belong to the maximum common subgraph.
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different classes, in order to take into account the case where one 
motif occurrence is close to two other motif occurrences, which 
are, for their part, very different.

Several classifications will be presented in the results sec-
tion, corresponding to several subsets S of motif vertices (see 
Definition 2.2), with experimentally chosen RMSD thresholds.

2.3.2. Representatives of classes
Topological representative. Each class will be represented by 
a unique graph, that we call the topological representative of 
the class. The representative of a class is the maximum com-
mon subgraph of every contracted k-extension of this class.

We first define the maximum common subgraph between 
two contracted k-extensions. This common subgraph must 
obviously contain the vertices and edges of the A-minor motif. 
Furthermore, all pairs of equivalent vertices must have the same 
label (0, C, N, M or ?) and belong to the same branch (see 
Definition 2.1), and all pairs of equivalent edges must belong to 
the same pairing family. In particular, vertices with the same 
label but with different weights can be equivalent. This allows us 
to consider as similar pairs of helices or pairs of loops, with 

a difference of one or two nucleotides. Note, however, that in 
a k-extension, the weight of the vertices is between 1 and 
k. Therefore, for a lower value of k, as will be the case in our 
study (see results section), the difference in weight for two 
equivalent vertices remains low as well.

This common subgraph must maximize the number of 
edges of Ah, weighted by the weight of the incident vertices. 
Only edges of Ah are taken into account because we are 
interested in the structural context composed of canonical 
and non-canonical interactions.

To find this maximum common subgraph between two 
contracted k-extensions, we rely on the resolution of the 
Maximum Common Edge Subgraph (MCES) problem [33], 
that aims to find a subgraph, common to any two graphs 
G and H, maximizing the number of edges. We adapted an 
exact method based on the MCES problem resolution devel-
oped in [34], which is initially used to find similarities 
between small molecules. The problem MCES has been pro-
ven to be NP-hard for arbitrary graphs [33], and then this 
exact method has an exponential complexity. However, in 
practice, the size of our k-extensions is small enough to 
keep the computation time reasonable (see resultats section).

Figure 3. Two examples of uncontracted 3–1,2,5,6-extensions (above), the induced 3D substructures (in the middle) and their 3D alignment (below). The nucleotides 
in the 3D structures correspond to the vertices in green in the 3-extensions. The RMSD between the two 3D substructures is 3.6 Å, which corresponds here to 3D 
structures with poor 3D similarity. Only the part of helix on the top left is well aligned. The right side is particularly poorly aligned because it is an interior loop in the 
first case, and an hairpin in the second. In the 3D structures, only backbones and nucleotides N1 of purines and N3 of pyrimidines are represented, and the 
nucleotides of the A-minor motif are indicated by their number (1,2,5,6). We will use the same 3D representation in the same orientation, in the next figures.
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We then define the maximum common subgraph for 
a class of size n, in the same way as the maximum common 
subgraph for two graphs, but for n graphs. To do so, we 
search for all the cliques of size n in a particular graph we 
construct from the contracted k-extensions of the class. The 
problem of finding all the cliques of size n is also NP-hard. 
However, the size of the graphs and the degrees of the 
vertices make possible to compute the search in reasonable 
time (see Results section).

The larger the size of the common subgraph, the more 
similar the contracted k-extensions of the class will be. 
An example of the maximum common subgraph between 
3 k-extensions is shown in Fig. 2 (bottom).

2.3.2.1. Sequence representative. 
We also want to characterize our classes with sequences. 
We construct two sets of regular expressions [35] for each 
class, one for each extended strand of the motif (loop and 
helix). They correspond to the union of all sequences of 
size 2ðkþ 1Þ of embedded A-minor motif occurrences in 
the class, induced by the maximum common subgraph of 
the class. It means that, for each position in the sequences, 
the type of nucleotides (A,C,G,U) is taken into account 
only when the nucleotide belongs to the maximum com-
mon subgraph. Otherwise, every letter (A,C,G,U) is author-
ized. The regular expressions are given in the 5’! 3’ 

order. An example of a pair of regular expressions is 
shown in Fig. 2 for a class of 3–1,2,5,6-extensions.

2.4. Search for class predictibility

The question is to determine how much knowledge of the 
context around an A-minor motif can help to infer its 
presence (and position). For answering this question, we 
define four kinds of contexts of A-minor motif. Then for 
each class and each kind of context, we search for occur-
rences of the context in the BGSU 2020 dataset (see 
section 3.1), and we look at whether an A-minor motif 
is present or not within the context.

We define below the four kinds of contexts and the main 
measures we use for quantifying the ‘predictibility’ for a given 
class and a given context. Examples of inputs and outputs for 
a given class for each context are presented in Fig. 4, and 
a summary of the properties of each kind of contexts is given in 
Table 1.

2.4.1. Sequence context.
The sequence context of a given class is defined by its 
sequence representative (see section 2.3.2). For every class, 
we search for its two sets of regular expressions in every 
sequence in the BGSU 2020 dataset. So we get two sets of 
occurrences: the occurrences of the strand of the A-minor 
motif involving the nucleotides 1 and 2 (helix strand), and 

(A)

(B)

Figure 4. Examples of how PPV is computed for a given class, for every context (sequence, all-interactions, sequence-canonical-short-range, sequence-all- 
interactions). The maximum common subgraph of the class is presented on the right. The input is indicated for every context (regular expressions and/or 
subgraphs). For the regular expressions, the letter N indicates that every letter is authorized. For the subgraphs, the non-canonical edges in blue (resp. red) are short 
range (resp. long range). Every input is searched in the sequences and/or RNA graphs contained in one of the two datasets (validation (val.) or test). The outputs 
indicate the number of occurrences of one strand of an A-minor motif (True positives (TP)), and the total number of occurrences (Positives (Pos.)) that were found in 
each dataset. With these two values, the PPV can be calculated.
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the occurrences of the strand of the A-minor motif involving 
the nucleotides 5 and 6 (loop strand).

To quantify the predictibility of the class, we are then 
interested in the proportion of actual A-minor motif occur-
rences among the results. This measure is generally known as 
the Positive Predictive Value (PPV) or Precision [36]. It 
calculates the number of true positives out of the total number 
of positives. In our case, for a given class C, we will calculate 
a PPV for the loop strand and a PPV for the helix strand, as 
we have two sets of occurrences.

PPVðC; loopÞ ¼

#loop strand occurrences involved in
an A � minor occurrence of C

#loop strand occurrences
(1)  

PPVðC; helixÞ ¼

#helix strand occurrences involved
in an A � minor occurrence of C

#helix strand occurrences
(2) 

In both calculations, the number of true positives in the 
numerator corresponds to the number of occurrences of the 
loop strand (equation (1)) or of the helix strand (equation 
(2)), that are involved in an A-minor motif occurrence of the 
class. The number of false positives is thus the number of 
occurrences of the loop strand (resp. helix strand) that are not 
involved in an A-minor motif occurrence of the class. We 
thus can note that, for a given class, if the regular expressions 
associated with the loop strand (resp. helix strand) matches 
the loop strand (resp. helix strand) of an A-minor motif 
occurrence of another class, this occurrence will be counted 
as false positive.

Note also that, for a pair of regular expressions that repre-
sents a given class, we potentially find several loop strands 
and several helix strands in an RNA sequence. We cannot 
decide which ones of them are corresponding, without having 
more information on the structure.

We also use the True Positive Rate, that is the number of 
actual A-minor occurrences that are found (True Positives), 
divided by the total number of A-minor occurrences that are 
present in the dataset (True Positives plus False Negatives):

TPR ¼
#actual A � minor occurrences found

#actual A � minor occurrences
(3) 

We consider here that an A-minor motif occurrence is found 
when both its strands are found, using the sequence repre-
sentatives of the loop strand and the helix strand of the same 
class.

2.4.2. All-interactions context.
The all-interactions context of a class of A-minor motif occur-
rences is defined as its topological representative (see section 

2.3.2), where all the non-canonical edges of the A-minor 
motif have been removed. In most cases, removing these 
edges from the topological representative disconnects it, giv-
ing two subgraphs, one for the helix strand and one for the 
loop strand. Thus, we can use the PPVs defined above, for the 
loop strand and for the helix strand. In the few cases where 
interactions between the strands exist other than the A-minor 
motif, we have a single set of occurrences, corresponding to 
the occurrences of the unique graph. We thus calculate the 
number of true positives as the number of occurrences corre-
sponding to both strands of an A-minor motif occurrence of 
the class, and the number of positives as the total number of 
occurrences. For convenience in the results, we consider for 
these classes the two PPVs with the same value.

2.4.3. Combining sequence and topology.
We also consider two other kinds of contexts, that mix 
sequence features and topological features. The first one, 
that we call sequence-all-interactions context, is composed of 
the all-interactions context, plus the sequence context. And 
the second one, that we call sequence-canonical-short-range 
context is composed of the sequence context, plus the all- 
interactions context, by keeping only the short range canoni-
cal edges. For these two mixed contexts, we have in general 
two sets of occurrences, one per strand, as it is the case for the 
two other previously defined contexts.

For the sequence-canonical-short-range context, we thus 
search simultaneously for the topological context of a given 
class, reduced to its short range canonical edges, and its 
regular expressions. For the helix strand, this context contains 
at least part of an helix, but can also contain a part of a loop. 
Similarly, the topological context of the loop strand of a given 
class can include a part of helix (see Fig. 4, sequence-canonical 
-short-range context).

3. Data

3.1. Datasets

We use two different types of datasets. The 2018 A-minors 
dataset is composed of 374 embedded A-minor motif occur-
rences. And the BGSU 2020 dataset is composed of 1582 non- 
redundant RNA structures of various sizes from the PDB. The 
content of these datasets is detailed in Supplemental material.

3.1.1. 2018 A-minors dataset
The 2018 A-minors dataset is composed of 374 intramolecular 
non-redundant occurrences of type I/II A-minor motif occur-
rences from PDB structures with a resolution of 3 Å or better. 
These occurrences are taken from the database CaRNAval 
[23] (November 2018) and the structural contexts of these 

Table 1. Summary of the four kinds of sequence and topological contexts around an A-minor motif occurrence.

Name Properties

Sequence context Two sets of regular expressions, one for each extended strand of the A-minor motif
All-interactions context The topological representative, without the non canonical edges of the A-minor motif
Sequence-all-interactions context The all-interactions context, plus the sequence context
Sequence-canonical-short-range context The previous one, where only the short range canonical edges are kept
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occurrences are taken from the PDB and annotated with the 
FR3D programme [18]. The vast majority of the A-minor 
motif occurrences are originated from ribosomes (91%), how-
ever the dataset also contains occurrences from ribozymes, 
riboswitches and introns (Table 2). These molecules are found 
in 16 different organisms, including 8 bacteria, 2 archaea, 5 
eukaryotes and 1 virus, and there are 15 occurrences for 
which the organisms are unspecified.

Occurrences of this dataset are listed in Supplementary 
material (S1.xls).

3.1.2. BGSU 2020 dataset
This dataset contains the representatives of equivalence classes 
from the BGSU RNA group (release 3.136, retrieved in 
June 2020) [37], with a resolution of 3 Å or better. It is 
composed of 1582 non-redundant RNA structures of various 
sizes from the PDB.

For every RNA molecule of this dataset, we extracted its 
RNA graph (see section 2.1) by using the FR3D annotation 
program [18].

This dataset can be divided in two parts. The first part, that 
we call the validation set is composed of the molecules from 

where the 374 A-minor motif occurrences of CaRNAval have 
been extracted (see Table 2). It is composed of 136 structures 
of molecules.

The second part, called the test set, is composed of all the 
other PDB structures. It is composed of 1446 structures of 
molecules and contains 87 A-minor motif occurrences (see 
Table 3 and Table 4). These 87 A-minors motif occurrences 
are found in 29 PDB structures. Note that none of the mole-
cules of the test set has been used for building the 2018 
A-minors dataset. Note also that most of the molecules of 
this dataset do not contain any A-minor motif.

These two datasets are described in Supplementary mate-
rial (S1.xls).

3.2. Homology groups

To determine how our classifications of A-minor motif occur-
rences behave with respect to homology, we detect occur-
rences that could be considered as homologous. We are 
interested in homologous occurrences, firstly in order to test 
the relevance of our approach (see Resultats section), and 
secondly in order to distinguish similar structural contexts 

Table 2. Number of A-minor occurrences in the 2018 A-minors dataset in terms of organisms and RNA families. In the first column, the letter in brackets indicates 
whether the organism belongs to Bacteria, Archaea, or Eukaryota.

Family  
Organism 23S rRNA 25S rRNA 28S rRNA 16S rRNA 18S rRNA Riboswitch Intron Ribozyme Total

D. radiodurans (B) 18 18
E. coli (B) 47 21 68
H. marismortui (A) 76 76
M. jannaschii (A) 1 1
S. oleracea (B) 17 9 26
S. aureus (B) 19 5 24
T. thermophilus (B) 46 33 79
S. cerevisiae (E) 19 9 28
H. sapiens (E) 8 4 12
L. donovani (E) 7 7
T. petrophila (B) 1 1
T. tengcongensis (B) 10 10
T. thermophila (E) 1 1
O. iheyensis (B) 6 6
D. iridis (E) 1 1
Hepatitis delta virus 1 1
Unspecified 2 8 5 15
Total 226 19 8 68 20 19 7 7 374

Table 3. Number of A-minor occurrences of the BGSU 2020 dataset in terms of organisms and RNA families. In the first column, the letter in brackets indicates 
whether the organisms belongs to Bacteria, Archaea or Eukaryota.

Family  

Organism
12S 

rRNA
28S 

rRNA
23S 

rRNA
16S 

rRNA
Alpha 
rRNA

Beta 
rRNA

Gamma 
rRNA tRNA

RNA 
antitoxin Ribozyme Riboswitch Others Total

S. scrofa (E) 6 6
O. cuniculus (E) 8 8
A.baumannii (B) 12 7 19
P. aeruginosa (B) 13 6 19
T. celer (A) 6 6
H. sapiens (E) 1 1
T. cruzi (E) 4 1 5
L. donovani (E) 4 4 1 9
T. thermophilus 

(B)
1 1 2

E. coli (B) 2 2 4
S. enterica (B) 1 1
Hepatovirus A 1 1
C. Pelagibacter (B) 1 1
Geobacter (B) 1 1
Unspecified 1 2 1 4
Total 7 8 25 19 8 5 1 4 1 2 3 4 87
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due to homology or due to convergence. A set of homologous 
occurrences will be called an homology group.

3.2.1. Detection of homologous A-minor motif occurrences 
using Gutell alignments
To detect them, we first use the sequence-structure align-
ments of Gutell [39] (retrieved in April 2021). A-minor 
motif occurrences from homologous molecules that are 
aligned in these alignments will be considered as homologous. 
In these alignments, 75% of the A-minor motif occurrences of 
the 2018 A-minors dataset are found.

3.2.2. Detection of homologous A-minor motif occurrences 
using a dedicated method
For the 25% of occurrences that are not present in Gutell’s 
alignments, we developed a specific method. We search for 
pairwise sequence similarity and structure similarity among 
the A-minor motif occurrences from homologous molecules. 
Thus, we perform a global alignment of the sequences of 30 
nucleotides on both directions around each strand of the 
motif, for each pair of occurrences of the 2018 A-minors 
dataset. To do so, we apply the Needleman-Wunsch algorithm 
implemented in the EMBOSS Needle tool from EMBL-EBI 
[40], with standard parameters (gap opening penalty of 10, 
and gap extending penalty of 0.5). We thus obtain three 
alignments for each pair of A-minor motif occurrences, one 
for each strand of the motif. We also compare the local 3D 
structures by using RMSD as described in section 2.2.

We then establish two thresholds to discriminate homo-
logous occurrences: one for the alignment scores and one for 
the RMSD. Two occurrences are considered homologous if 
both alignment scores are above the corresponding threshold, 
and RMSD is under the corresponding threshold.

The thresholds we choose are 2Å for the RMSD, and 50 for 
the alignment score. We test the validity of the method by 
checking if the homologous occurrences, found among the 
A-minor motif occurrences in the Gutell’s alignments, are also 

obtained with our method. This is the case for almost all pairs of 
occurrences: only 7 pairs of occurrences are not correctly clas-
sified with our method, on a total of more than 35000 pairs.

Next, we construct a graph where each vertex is an 
A-minor motif occurrence, and there is an edge between 
two occurrences if they are homologous. Finally, we group 
homologous occurrences with the single link approach: two 
occurrences are in the same homology group if they belong to 
the same connected component in the graph. In this way, we 
obtain 49 groups of 3 or more homologous occurrences, 27 
groups of 2 occurrences, and 11 occurrences not homologous 
to any other occurrence, in the 2018 A-minors dataset.

4. Results

This section presents the results obtained using the datasets 
we previously presented.

In a first part, several classifications of the occurrences of the 
2018 A-minors dataset, based on 3D similarities (see section 2.2) 
will be presented. For every classification, we fixed an order of 
extension k equal to 3. This value of k was chosen experimentally, 
among a range between 1 and 10. It allows us to optimize the 
consistency between 3D similarity (through RMSD, see section 
2.2) and graph similarity, as it is described in [28]. By choosing a k 
equal to 3, we can also note that our 3D classification will easily 
distinguish between A-minor motif occurrences involving 
a tetraloop and A-minor motif occurrences involving an internal 
loop, because RMSD will be higher between a tetraloop and an 
internal loop than between two tetraloops or two internal loops.

The first classification is based on 3–1,2,5,6-extensions (see 
Definition 2.2). It will be called 1,2,5,6-classification. The two 
other classifications are based on extensions around only 3 
nucleotides of the motif (3–1,5,6-extension and 3–2,5,6-exten-
sion). These classifications will be, respectively, called 
1,5,6-classification and 2,5,6-classification. We will describe 
these three classifications and their particularities.

In a second part, we will present the results of the predict-
ibility study, on the classes of the 1,2,5,6-classification, by 
using the four kinds of context defined in section 2.4.

The source code of this study implemented in Python3 is freely 
available at https://cbe.uqam.ca/aminor_analysis/, along with a 
jupyter notebook to test some features. Note that the search for 
topological representatives for all the classes takes around 5 hours 
on a PC (Intel Core i5-7440HQ 4 × 2.80GHzCPU), and the search 
for occurrences of representatives in the two datasets (validation 
and set) takes around a day on the same PC.

4.1. Classifications based on 3D similarities

For every classification, we present in this section, details 
about the content of each class are available in Supplemental 
material (S1.xls).

4.1.1. Classification on 4 branches: 1,2,5,6-classification
4.1.1.2. Description of the classification. With an order k 
equal to 3 and an extension around 4 nucleotides of the 
motif, the local 3D structures around the A-minor motif 
occurrences are composed of 18 nucleotides. To cluster 

Table 4. Number of PDB structures by RNA family in the BGSU 2020 dataset 
(without the 29 structures with A-minor occurrences)

RNA family Number of PDB structures

tRNA 62
Riboswitch 37
5S rRNA 19
Ribozyme 18
snRNA 14
crRNA 12
mRNA 8
virus RNA 8
sgRNA 7
16S rRNA 6
23S rRNA 6
SRP 6
5.8S rRNA 3
gamma rRNA 1
epsilon rRNA 2
zeta rRNA 2
RNA antitoxin 2
intron 1
delta rRNA 1
28S rRNA 1
Others (sequence size superior to 50) 84
Others (sequence size inferior to 50) 1117
Total 1417
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these A-minor motif occurrences according to the similarity 
of their local 3D structures, with the method described in 2.2, 
we choose a threshold on RMSD of 2.5Å. This threshold was 
chosen experimentally to obtain relevant 3D alignments (see 
examples in Fig. 6).

The number of classes per size is indicated in Table 5, in 
comparison with the number of classes of the same size in the 
two other classifications.

The distribution of non-ribosomal A-minor occurrences in 
this classification is presented in Table 6. We see in this table 
that 4 classes are composed of non-ribosomal A-minor motif 
occurrences only, and 5 classes possess ribosomal and non- 
ribosomal occurrences.

4.1.1.3. Consistency of the classification with homologous 
occurrences. This 1,2,5,6-classification is consistent with 
homology. Two homologous occurrences are generally 
grouped together, and most of the classes contain only homo-
logous occurrences. More precisely, according to our RMSD 
threshold, 1305 pairs of occurrences are homologous and 
share similar local 3D substructures, whereas 242 non- 
homologous pairs share similar 3D substructures and 50 
homologous pairs do not share similar 3D substructures (see 
Fig. 5).

In the following paragraph, we will detail some examples of 3D 
classes composed of non-homologous occurrences and examples 
of homologous occurrences not grouped in the same 3D class.

4.1.1.4. Differences between homology groups and 3D simi-
larity classes. As it can be seen in Fig. 5, 11 classes are 
composed of non-homologous occurrences. For example, the 
class numbered 50 is constituted of occurrences from 6 
homology groups, found in both subunits of ribosomes or in 
introns, from eukaryotic or bacterial organisms. The class 
numbered 52 is constituted of occurrences from 3 homology 
groups all found in large subunits of ribosome, in organisms 
from Bacteria and Archaea. The class numbered 56 is com-
posed of occurrences from 4 homology groups from large 
subunits of ribosome or from riboswitches. The organisms 
in the class 56 belong to the three domains of life. The 3D 
alignments of these three classes are presented in Fig. 6A,B,C.

On the other hand, the classes 44 and 47 are composed of 
homologous occurrences. One of these classes (class 44) is actually 
composed of occurrences from Bacteria and the other (class 47) is 
composed of occurrences from Archaea and Eukaryota. The 3D 
difference between the structural contexts of these occurrences can 
thus be explained by evolutive drift. The 3D alignment of these two 
classes is presented in Fig. 6D. The major difference in this 

Figure 5. Similarity graph representing the 2018 A-minors dataset and 1,2,5,6-classification of this dataset. Each vertex is an embedded A-minor motif occurrence 
and there is an edge between two vertices if the RMSD is equal to 2.5Å or better. The thicker the edges, the lower the RMSD. Homologous occurrences have the 
same colour and the same number. Examples of classes are circled in red (the other classes correspond to connected components of the graph) .

Table 5. Number of classes by size for each classification (RMSD threshold of 2.5Å).

Class size 
Classification 1 2 3 4 5 6 7 8 9 10-19 20-29 30-39 40-49 50-59 Total

1,2,5,6-classification 19 10 13 10 1 3 2 5 2 13 1 0 0 0 79
1,5,6-classification 19 8 14 8 1 2 1 4 2 10 0 1 0 1 71
2,5,6-classification 17 7 12 12 1 1 2 4 2 9 3 0 0 1 71
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alignment is the part at the top right on the Figure, framed in red, 
where the nucleotides from the class 47 and the nucleotides from 
the class 44 are not aligned at all.

However, it can be noticed that, in some cases, the classes of 
non-homologous occurrences do not group all the occurrences of 
one given homology group (example of classes 56, 58 or 59). 
Furthermore, the 3D alignments presented in Fig. 6 show that 
one branch of the extension is often less well aligned than the 
others. This less well-aligned branch often belongs to the helix 
strand (Fig. 6A and 6C). Some parts of the 3D contexts of A-minor 
motif occurrences, in particular the loop strand, thus seem to be 
more conserved than the others. This structural asymmetry may 
suggest that one part of the 3D context is more important than the 
other for the motif formation. This is what we will investigate in 
the following, by calculating other classifications, considering only 
three branches around the A-minor motif. The results are pre-
sented in the next part.

4.1.2. Classifications on 3 branches
This part describes the 3D classifications obtained from 
extensions around three nucleotides of the motif: the two 
nucleotides involved in the loop (numbered 5 and 6) and 
one of the two nucleotides involved in the helix and in 
a cis Sugar/Sugar interaction (numbered 1 or 2). The local 

3D structures induced by these types of extension are 
then composed of 15 nucleotides.

We choose the same RMSD threshold of 2.5Å as for 
the classification on 4 branches. Smaller classes composed 
of non-homologous occurrences, obtained from the same 
3 branches, and with a RMSD threshold of 2 Å, are 
described in Supplementary material (S2).

The number of classes per size is shown in Table 5 for 
both classifications, along with the values for the classifi-
cation on 4 branches.

These two classifications, called 1,5,6-classification and 
2,5,6-classification, group pairs of homologous occurrences 
together, as the classification on 4 branches. However, several 
new classes of non-homologous occurrences appear. We will be 
particularly interested in the classes, from these two classifica-
tions, with occurrences from at least two homology groups, and 
in which there are more than one occurrence by homology 
group if the class is composed of only two homology groups. 
These classes are presented in the next paragraphs and in Fig. 7.

In order to distinguish the class numbers of the different 
classifications, we will use the suffix ‘a’ to refer to the 1,5,6-classi-
fication and the suffix ‘b’ to refer to the 2,5,6-classification. For 
example, class number 50 of the 1,5,6-classification will be called 
50a and class number 50 of the 2,5,6-classification will be 
called 50b.

Figure 6. 3D alignments of examples of classes from the 1,2,5,6-classification. These classes are composed of non homologous occurrences (A), (B), (C) or composed 
of homologous occurrences that are split into two classes (D). The structures are coloured by nucleotide type (A:red, C:blue, G:green, U:magenta). The same 3D 
representation as in the Fig. 3 is used. In (A) and (C)., the less well aligned part of the 3D structures are bordered in red. In (D), the less well aligned part is bordered 
in red and displayed in a different orientation.
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1,5,6-Classification The 1,5,6-classification is composed of 
71 classes (see Table 5 for details) and comprises 3 classes that 
fit the criterion of non homology given above (classes 47a, 51a 
and 45a circled in blue in Fig. 8) . The 3D alignments of these 
three classes are presented in Fig. 8.

The first one (numbered 47a in the Fig. 8) is composed 
of 34 occurrences from 6 different homology groups. The 
occurrences are found in ribosomes or in introns, from 
Bacteria, Archaea and Eukaryota. Every occurrence of this 
class involves an internal loop, and in half of the cases, this 
internal loop is a loop including a tSH and a tWH inter-
actions and the nucleotides 5 and 6 are adenines, so it is 
called A-rich loop. This class especially contains the occur-
rences of the classes 55 and 59 of the 1,2,5,6-classification 
on 4 branches (see Fig. 5).

The second class (numbered 51a in the Fig. 8) contains 
12 occurrences from 3 different homology groups. The 
occurrences of this class are all found in large subunits of 

ribosome, from Bacteria, Archaea and Eukaryota. Every 
occurrence of this class involves an internal loop, and, in 
particular, 5 of them involve an A-rich loop.

The third class (numbered 45a in the Fig. 8) contains 54 
A-minor motif occurrences from 11 homology groups. The 
occurrences of this class are found in various molecules, 
such as both subunits of ribosomes, riboswitches and 
introns, in organisms belonging to Bacteria, Archaea and 
Eukaryota. All of the occurrences of this class involve an 
hairpin, and in most cases, this hairpin is a GNRA tetraloop 
[41]. However, note that other classes also involve motif 
occurrences with a GNRA loop. In comparison with the 
1,2,5,6-classification, this class groups 8 classes of the 
1,2,5,6-classification, in particular the classes of non- 
homologous occurrences, numbered 50 and 56 (see Fig. 5) .

2,5,6-Classification The 2,5,6-classification is composed of 
71 classes (see Table 5 for details) and comprises 4 classes that 
fit the criterion of non homology (classes 49b, 56b, 57b and 

Figure 7. 3D alignments of local 3D structures of A-minor motif occurrences from classes in the 1,5,6-classification ((A), (B), (C)) or in the 2,5,6-classification ((D), (E), 
(F)) with non homologous occurrences. The 3D structures are coloured by nucleotide type (A: red, C: blue, G: green, U: magenta), with the same 3D representation as 
in Fig. 3. For each 3D structure, only the 3 branches considered in the classification are represented. The branch 2 is missing in (A), (B), (C) and the branch 1 is missing 
in (D), (E) and (F).  
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43b framed in blue in Fig. 8) . The 3D alignments of these 4 
classes are presented in Fig. 7.

The first one (numbered 49b in the Fig. 8) is composed of 19 
occurrences from 3 different homology groups. The A-minor 
motif occurrences are all found in large subunits of ribosome, 
from Bacteria, Archaea or Eukaryota. They all involve an inter-
nal loop, that is often an A-rich loop (12 out of 19).

The second one (numbered 56b in the Fig. 8) is composed of 
12 occurrences from 4 different homology groups. The occur-
rences of this class are found in both subunits of ribosomes or in 
introns, from bacterial or archaeal organisms. They all involve an 
internal loop which is not an A-rich loop.

The third one (numbered 57b in the Fig. 8) is composed of 7 
occurrences from 2 different homology groups. The occurrences 
are found in large subunits of ribosome, from Bacteria or 
Archaea. As the class 56b presented above, the occurrences of 
this class all involve an internal loop, which is not an A-rich loop.

The last class that we consider in the 2,5,6-classification 
(numbered 43b in the Fig. 8) is composed of 48 occurrences 
from 15 homology groups. The occurrences are found in both 
subunits of ribosomes, in introns or in ribozymes, from 
Bacteria, Archaea or Eukaryota. All of the occurrences of 
this class involve an hairpin that is almost always a GNRA 
tetraloop (except 3), like the class 45a of the 1,5,6-classifica-
tion. These two classes (43b of the 2,5,6-classification and 45a 
of the 1,5,6-classification) possess 20 occurrences in common, 
and 15 of them were already gathered in the 1,2,5,6-classifica-
tion on 4 branches (class 50, Fig. 5), along with 2 other 
occurrences.

Figure 8. Similarity graphs representing the classes from the 1,5,6-classification (circled in blue and annotated with ‘a’) and from the 2,5,6-classification (framed in 
blue and annotated with ‘b’),with non homologous occurrences. The vertices correspond to the embedded A-minor motif occurrences. Homologous occurrences have 
the same colour and the same number. There is an edge, represented by a solid line, between two vertices if the RMSD (in both classifications) between the 
corresponding local 3D structures is equal to 2.5 Å, between two vertices if the RMSD between the corresponding local 3D structures in the 1,5,6-classification only 
(resp. 2,5,6-classification only) is equal to 2.5 Å or better. There is an edge, represented by a dotted line (resp. a dashed line), between two vertices if the RMSD 
between the corresponding local 3D structures in the 1,5,6-classification only (resp. 2,5,6-classification only) is equal to 2.5 Å or better. For each connected 
component, the type of loop in the A-minor motif occurrences is indicated.

Table 6. Proportion of A-minor occurrences found in non-ribosomes for every 
class of the 1,2,5,6-classification where at least one A-minor motif occurrence is 
found in non-ribosomes. The proportion x=y indicates that there are x occur-
rences of non ribosomal occurrences out of y occurrences in the class.

Class 
id

Non ribosome 
proportion RNA families in the class

41 3/3 Intron
43 1/9 23S rRNA, 25S rRNA, Ribozyme
45 13/13 Riboswitch
49 2/6 16S rRNA, Intron
50 1/17 23S rRNA, 25S rRNA, 28S rRNA, 18SrRNA, 16S 

rRNA, Intron
54 3/3 Intron, Ribozyme
56 2/26 23S rRNA, 25S rRNA, 28S rRNA, Riboswitch
57 4/4 Riboswitch
59 1/15 23S rRNA, 25S rRNA, Intron
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It can be noted that the 2,5,6-classification contains several 
classes containing A-minor motif occurrences in common 
(see Fig. 8). For example, the classes 49b, 56b and 57b possess 
3 A-minor motif occurrences in common. In Fig. 9, are 
presented the 3D alignments of the local 3D structures of 
the occurrences from classes 49b and 57b. It shows that the 
local 3D structures of occurrences that are in both classes (in 
blue) seem to share similarities with the local 3D structures of 
the occurrences that are only in one of the two classes (in 
green and orange). It then justifies that the A-minor motif 
occurrences that the classes have in common actually belong 
to both classes.

4.2. Towards prediction of A-minor motifs

What kind of information, contained in the structural context, 
can be useful to characterize and predict the presence and the 
position of A-minor motifs? This is the question we address in 
this section. In section 2.4 we defined four kinds of sequence 
and topological contexts for a class of embedded A-minor 

motif occurrences, and we defined two measures for quantify-
ing how a given context can infer the presence of an A-minor 
motif occurrence in a RNA graph (see section 2.4.1): the PPV 
by strand and by class, and the TPR which we calculate for all 
classes together. Here we focus on the 1,2,5,6-classification, 
and we consider only the classes which contain at least 3 
occurrences in the 2018 A-minors dataset. We show the 
results of predicting A-minor motifs in the BGSU 2020 data-
set, given their contexts. All PPV values per class are detailed 
in Supplementary material (S1.xls). Remember that, as 
explained in section 3.1, the BGSU 2020 dataset is divided 
in two parts, the validation set and the test set.

4.2.1. Average PPV and TPR to compare topology and 
sequence contexts on both strands
Table 7 shows the average PPV for the loop strand and for the 
helix strand over all the classes, in the validation set. And 
Table 8 shows the average PPV for each strand in the valida-
tion set and in the test set, for the classes having at least one 
occurrence of an embedded A-minor motif occurrence in the 

Figure 9. 3D alignment of the classes 49b and 57b of the 2,5,6-classification (see Fig. 8). The green structures are part of the class 49b only, and the orange structures 
are part of the class 57b only. The blue structures belong to both class 49b and class 57b (in greyscale, it corresponds to the darkest).

Table 7. Average PPV values for each strand, for each category of context, with the 
validation set.

Category of context

Mean PPV validation set

Loop strand Helix strand

Sequence context 0.16 0.13
All-interactions context 0.31 0.23
Sequence-canonical-short-range context 0.32 0.27
Sequence-all-interactions context 0.59 0.54
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test set. We consider that an embedded A-minor motif occur-
rence in the test set belongs to a given class if its RMSD with 
at least one occurrence of the class (in the validation set) is 
less or equal to 2.5 Å. As we can see in Table 7 and Table 8, 
there is a good correlation between results in the two sets for 
both strands. Meanwhile, the absolute PPV values between the 
two sets cannot be compared directly, because the respective 
sizes and properties of the data are not the same. As expected, 
the best PPV values are obtained for the combination of 
sequence and all interactions, respectively, for the (complete) 
validation set, 0:59 for the loop strand and 0:54 for the helix 
strand, and, for the test set, 0:36 for the loop strand and 0:33 
for the helix strand

There is a drastic global augmentation of the PPV, for the 
sequence and canonical short range context compared to the 
sequence context (for the validation set, 0.16 to 0.32 on 
average for the loop strand, and 0.13 to 0.27 on average for 
the helix strand, and for the test set, 0.02 to 0.12 on average 
for the loop strand, and 0.01 to 0.09 for the helix strand).

Similarly, the average PPV is considerably better for the all 
interactions context than for the sequence context (for the 
validation set, 0.16 to 0.31 on average for the loop strand and 
0.13 to 0.23 on average for the helix strand, and for the test 
set, 0.02 to 0.19 on average for the loop strand, and 0.01 to 
0.13 on average for the helix strand).

On the other hand, taking both the sequence and the 
canonical short-range interactions gives no advantage, glob-
ally, to predict A-minor motif occurrences compared to the 
all-interactions context (without sequence), especially for the 
loop strand (average PPV of 0.31 and 0.32 for the validation 
set). This is even the contrary in the test set (mean PPV of 
0.12 for the sequence-canonical-short-range context and 0.19 
for the all-interactions context).

Moreover, the average PPV values are better for the loop 
strand than for the helix strand, for every context and every 
dataset. This is especially the case for the all-interactions 
context in the validation set, where the average PPV for the 
loop strand is 0.31 and 0.23 for the helix strand.

Table 9 shows the global True Positive Rate (TPR) on both 
datasets. For both datasets, the results are fairly good. Obviously, 
in the validation set, all the A-minor motifs belonging to a class 
with more than 3 A-minor motif occurrences are found, since all 

these classes and only them have been taken into account for this 
study. The missing A-minor motif occurrences in this dataset are 
in classes of size 2 or isolated in the classification. In the test set, 
more than 60% of the motif occurrences are found with the 
sequence and all interactions context, which is the most restric-
tive one.

4.2.2. Classes with different profiles according to the 
predictibility contexts
Detailed results on classes are shown in Fig. 10 and Fig. 11. 
Fig. 10 shows the PPV for the different classes and the 
different contexts in the validation set. They are sorted by 
increasing PPV in the sequence-all-interactions context for 
the helix strand . As before, only the classes which contain 
at least 3 occurrences in the 2018 A-minors dataset (and thus 
in the validation set) have been considered. Fig. 11 shows the 
PPV for the subset of classes considered for the test set (see 
above), using the validation set and the test set, in the 
sequence-all-interactions context.

4.2.2.1. Classes with a better conserved topology than 
sequence. In most cases, the PPV with the all-interactions 
context is higher than the PPV with the sequence context: 
33 out of 44 classes in the validation set have a higher PPV 
with the all-interactions context for at least one of the two 
strands (19 of them have a higher PPV for both strands, 11 
for the loop strand only, and 3 for the helix strand only) 
(see Fig. 10A, B). In the test set, 24 classes out of 27 have 
a higher PPV with the all-interactions context for at least 
one of the two strands (including 13 classes with a higher 
PPV for both strands, 6 for the loop strand only and 5 for 
the helix strand only) (see Supplementary material, S1.xls). 
In 13 classes, the ratio between the two PPVs for the loop 
strand is even above 2 in both sets: classes 2, 10, 12, 13, 25, 
26, 33, 35, 38, 44, 48, 55, 56 (for 4 of them, the same ratio 
is above 2 for both strands: 2,13,25,26).

All these 13 classes contain A-minor motif occurrences 
found in at least two domains of life among Bacteria, 
Archaea and Eukaryota: six classes are found in the three 
domains and seven in two domains. Among them, class 44 
is particular because it is found in Bacteria and in chlor-
oplasts. These 13 classes also have the particularity to 

Table 8. Average PPV values, for each category of context, with the validation set and the test set, for the classes having at least one 
occurrence of an embedded A-minor motif in the test set.

Category of context

Mean PPV validation (sub)set Mean PPV test set

Loop strand Helix strand Loop strand Helix strand

Sequence context 0.08 0.07 0.02 0.01
All-interactions context 0.24 0.15 0.19 0.13
Sequence-canonical-short-range context 0.21 0.17 0.12 0.09
Sequence-all-interactions context 0.51 0.47 0.36 0.33

Table 9. True Positive Rate (TPR) on both datasets.

Category of context True Positive Rate validation set True Positive Rate test set

Sequence context 368/374 ≈ 0.98 76/87 ≈ 0.87
All-interactions context 351/374 ≈ 0.94 67/87 ≈ 0.77
Sequence-canonical-short-range context 341/374 ≈ 0.91 57/87 ≈ 0.66
Sequence-all-interactions context 341/374 ≈ 0.91 53/87 ≈ 0.61
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possess a large maximum common subgraph of the loop 
strand: the common subgraph of 7 of them contains more 
than 4 interactions (canonical and non canonical), which 
is the mean value for the common subgraphs of all classes. 
The 5 other classes possess 1, 2 or 3 interactions, includ-
ing at least 1 non-canonical interaction. In contrast, the 13 
classes are all characterized by various sequences with 

more than thirty and sometimes hundreds of theoretical 
possible sequences for one class, i.e. the possible sequences 
that can be obtained from the regular expressions.

4.2.2.2. Classes with a better conserved sequence than topol-
ogy. On the other hand, there are 11 classes in the valida-
tion set (and 3 in the test set) where, in the contrary, the 

Figure 10. PPV by classes for every category of predictibility, with the validation set. The classes are ordered by increasing PPV with the sequence-all-interactions 
context.
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two PPVs (loop strand and helix strand) with the sequence 
context (Fig. 10A) are higher than the PPV with the all- 
interactions context (Fig. 10B): classes 24, 31, 41, 47, 49, 
50, 52, 53, 57, 58, 59 in the validation set, classes 18, 53 
and 57 in the test set (see Supplementary material, S1.xls). 
Classes 53 and 57 are the only one to have this property in 
both sets. The A-minor motif occurrences within these 
classes are mostly found in one or two domains of life: 
one domain for 3 classes (Bacteria or Archaea), two 
domains (Bacteria and Eukarya or Archaea and Eukarya) 
for 6 classes. There are three exceptions: the motif occur-
rences of the classes 18, 50 and 59 are found in the three 
domains of life. Note however that the PPV with the 
sequence context are very low for both strands, for these 
three classes (in the validation set for the classes 50 and 59 
and in the test set for the class 18). About topological 
features, the maximum common subgraphs (containing 
both the loop strand and the helix strand) of these 12 
classes possess a tiny proportion of non-canonical inter-
actions, and for 8 of these classes, the maximum common 
subgraph contains less than 5 canonical and non-canonical 
interactions in the loop strand and less than 5 canonical 
and non-canonical interactions in the helix strand. Apart 
from three classes (22, 25 and 47) which have similar 
sequences, the 9 other classes do not show a good 
sequence similarity. This explains the low PPV (inferior 
to 0.27 with the validation set and even lower with the test 
set), although it is better with sequence context than with 
all-interactions context.

This better conservation of the sequence rather than the 
topology is thus probably more a property related to the 
datasets we use than to the A-minor motif classes we 
study.

4.2.2.2. High PPV on sequence-all-interactions context for 
a majority of classes. As expected, the sequence-all- 
interactions context gives the best results (Fig. 11). In the 
test set, there are 5 classes where the PPV in that case is 

(slightly) lower than the PPV in the all-interactions context 
(classes 22, 29, 48, 52 et 60).

Despite these good results for the sequence-all-interactions 
context, there are 11 classes in the validation set for which the 
PPV is lower than 0.5 for both the loop strand and the helix 
strand. Moreover, this is also true for 14 classes out of 27 in 
the test set. Seven out of these 14 classes contain non- 
homologous occurrences. Three out of the 7 other classes 
with lower PPV are found in the three domains of life, and 
the others are found in two domains of life or groups occur-
rences found in riboswitches with mutations (class 57). It may 
explain these results.

All other classes, that is 33 out of 44, have a PPV above 0.5 
in the validation set for at least one strand (25 for both 
strands, 5 for the loop strand only, and 3 for the helix strand 
only), and most of them also in the test set (exceptions are 
classes 22, 48, 55, 60). However, none of these classes contains 
non-homologous occurrences.

5. Discussion

5.1. Our classifications are consistent with homology 
and with previously characterized subclasses of type I/II 
A-minor motif

The classifications presented in section 4.1 group together 
A-minor motif occurrences sharing similar 3D contexts. 
They are consistent with homology, but also uncover local 
3D similarities between A-minor motif occurrences that are 
not due to homology. Furthermore, some classes in these 
classifications contain occurrences from two or three domains 
of life among Bacteria, Archaea or Eukaryota. We can then 
make the hypothesis that these A-minor motif occurrences are 
involved in important mechanisms that require a specific 3D 
structure.

Moreover, for the two classifications on 3 branches, we 
determine new subclasses of A-minor motif occurrences invol-
ving the same kind of loop (hairpin or internal loop). We 
compared our classifications with the classification of A-minor 

Figure 11. PPV for the sequence-all-interactions context, with the two datasets (validation set in yellow and test set in purple). Have been considered only the classes 
for which it exists at least one A-minor motif occurrence from the test set, that shares similar local 3D structures with at least one A-minor motif occurrence of the 
class (RMSD equal to 2.5 Å or better). For some classes, no occurrence was found in the test set. This case is represented by a dashed bar of size 1, to differentiate it 
from a PPV equal to 1.
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motifs presented in [27]. The authors use secondary structure 
considerations: they classify A-minor motifs according to the 
type of secondary structure elements involved in the motifs and 
their relative position to each other (local or long range). Our 
datasets are slightly different because they use the DSSR program 
to annotate the A-minor motifs and a set of representatives 
structures from the BGSU group (release 3.76) to have only 
non redundant structures. Moreover, we consider only intramo-
lecular type I/II A-minor motifs, which is not their case.

We have in common 311 A-minor motif occurrences. The 
similarities and differences between this classification and our 
classifications are presented in Table 10. We then see that 
a majority of pairs of occurrences belonging to the same class in 
our classifications are also grouped together in the classification in 
[27]. On the other hand, some of their classes gather several classes 
of our classifications, especially for two large classes (of sizes 119 
and 64) in their classification: the class where are grouped the 
A-minor motifs composed of long-range interactions between 
a hairpin and a stem, and the class where are grouped the 
A-minor motifs composed of long range interactions between an 
internal loop and a stem. The first class contains almost every 
A-minor motif occurrence with a GNRA loop involved (58 out of 
68) and the second class contains almost every A-minor motif 
occurrence with an A-rich loop involved (18 out of 25).

We thus can conclude from this observation that the classifica-
tions we present here are consistent with this previous classifica-
tion and seem to refine it. The main difference between the two 
approaches is the definition of A-minor motif context: our defini-
tion takes into account 3D information, which is not their case, 
and we only consider interactions appearing between a set of 
nucleotides that are at a distance inferior to 3 of one of the 
nucleotides of the motif on the primary sequence, whereas they 
include secondary structure considerations in classifying, such as 
the distance between strands of the motif in a secondary structure 
or the types of loop and helix that are involved.

5.2. Most homology groups have a high PPV

The fact that some of our classes transcend homology proper-
ties can raise the possibility that some A-minor motif occur-
rences are predictable.

Our predictibility study provides encouraging results, 
especially for the classes with homologous occurrences: 
most of them have a high PPV, with sequence and 

topological considerations. On the contrary, all the classes 
with non-homologous occurrences have a low PPV on both 
strands. Therefore, even though the A-minor occurrences 
within these classes share similar 3D contexts, sequence 
and topological signals only are not sufficient to predict 
their presence and positions. A few classes, composed only 
of homologous occurrences, also have a very low PPV for 
both strands, which means that the A-minor occurrences 
within these classes do not share sufficiently similar topolo-
gical contexts and sequences. These results could be partly 
explained by the fact that our model does not take into 
account several important interactions, such as stacking 
and base-phosphate bonds.

We can also note that the loop strand seems to have 
a better PPV than the helix strand for most classes. It could 
suggest that the signal on the loop strand gives more informa-
tion than the signal on the helix strand.

We can also note that A-minor motif occurrences invol-
ving a GNRA loop do not seem to be more predictable than 
A-minor motif occurrences with another kind of loop. For 
example, classes composed of A-minor occurrences with 
GNRA, such as classes 56, 57 or 58 have a low PPV for the 
loop strand with the sequence-all-interactions context on the 
validation set (0.03 for the class 58, 0.34 for the class 56 and 
0.20 for the class 57), and even lower on the test set (0.004 for 
the class 58, 0 for the class 57 and 0.16 for the class 56). This 
could suggest that GNRA loops are not as a useful marker as 
one would expect for the prediction of A-minor motifs, even 
though this kind of loop is very well-known and studied.

6. Conclusion and perspectives

The purpose of this article was to answer the following ques-
tion: how can the local structural context of A-minor motif 
occurrences help to characterize and predict them?

To do so, we developed an automatic graph-based method 
to classify A-minor occurrences according to their 3D context 
similarities and then we computed sequence and topological 
representatives for every class to determine whether these 
representatives can help to predict the presence of an 
A-minor motif occurrence.

More precisely, we considered local 3D structures of 
A-minor motif occurrences and we presented a method to 
compare these local structures with RMSD, to search for local 
3D similarities. This method is based on a new definition of 
the structural context of A-minor motif using graphs. It 
allowed us to uncover new subclasses of A-minor motif 
occurrences according to their local 3D similarities. 
Occurrences within these subclasses generally share the same 
local submotif such as GNRA loop or A-rich loop and these 
classes are consistent with another recent approach using 
secondary structure elements as contexts.

We also presented a classification of A-minor motif occur-
rences according to homology to compare classes with similar 
local 3D structures and homology groups. The two 
approaches are consistent. However, some of the classes shar-
ing similar local 3D structures are composed of non homo-
logous occurrences that do not have necessarily similar 
sequences. Could it be due to convergence? It would be 

Table 10. Number of pairs classified in the different classifications, in compar-
ison with the pairs classified in the classification in [27]. The proportion of 
classes including these pairs is indicated in brackets when the pairs are classified 
in one classification and not in the other. For example, 9 classes out of 20 in [27] 
contain A-minor motif occurrences that are not classified in the 
1,2,5,6-classification.

classified in [27]
not classified in 

[27]

classified in 1,2,5,6-classification 1195 150 (16/79 classes)
not classified in 

1,2,5,6-classification
8523 (9/20 classes)

classified in 1,5,6-classification 2029 285 (15/71 classes)
not classified in 1,5,6-classification 7689 (9/20 classes)
classified in 2,5,6-classification 1446 356 (18/71 classes)
not classified in 2,5,6-classification 8272 (10/20 

classes)
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interesting to explore further these classes in order to answer 
this question.

Then we tested the capacity of prediction of sequence and 
topological representatives, respectively modelled by regular 
expressions and graphs, of classes of A-minor motif occur-
rences sharing similar local 3D substructures. We showed 
that, for particular A-minor motif occurrences, the topology 
combined with a sequence signal is sufficient to predict the 
presence of an A-minor motif occurrence.

In most cases however, topological and sequence infor-
mation is a good signal, especially for classes composed of 
homologous occurrences, but probably not sufficient for 
prediction. This suggests that the influence of the global 
structure is too important for the local context alone to be 
sufficient. Furthermore, some changes in our model may 
improve the results: we can hypothesize that taking into 
account other interactions in the local structural context, 
such as stacking or base-phosphate bonds, could lead to 
a model closer to 3D structures. This would decrease the 
number of false positives.

Moreover, our research method for sequence representa-
tive is binary: we search for a sequence compatible with the 
regular expression. No probability of appearance is consid-
ered. Probabilistic modelling for searching sequence occur-
rences have already been used for RNA motif prediction [21] 
and could then improve our results.

To conclude, this study thus showed that, although topologi-
cal and sequence representatives do not give enough information 
to predict A-minor motif occurrences, they can be useful mar-
kers to identify A-minor motifs for future prediction methods.
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